Abstract

A previously developed model by Haith et al. (2002) related pesticide volatilization from turf to evapotranspiration (ET) by scaling factors determined from vapor pressures and heats of vaporization. Although the model provided volatilization estimates that compared well with field measurements, it relied on the Penman ET equation, requiring hourly temperature, wind speed, and solar radiation data, none of which are routinely available at field sites. The current study determined that the volatilization model works equally well with a simpler ET equation requiring only daily temperatures. Three daily temperature-based ET models were evaluated as vehicles for estimating pesticide volatilization from turf: Hamon, Hargreaves-Samani, and a modified Priestley-Taylor. When compared with field volatilization measurements for eight pesticides, volatilization estimates produced from the Hargreaves-Samani model most closely approximated both the field observations and the previous estimates based on the more data-intensive Penman model. Mean estimated volatilization exceeded mean observations by 15% and the coefficient of variation (R2) between estimates and observations was 0.65. The comparable values based on Penman ET were 17% and 0.63, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.