Abstract
To demonstrate the performance of methodologies that include machine learning (ML) algorithms to estimate average treatment effects under the assumption of exogeneity (selection on observables). Simulated data and observational data on hospitalized adults. We assessed the performance of several ML-based estimators, including Targeted Maximum Likelihood Estimation, Bayesian Additive Regression Trees, Causal Random Forests, Double Machine Learning, and Bayesian Causal Forests, applying these methods to simulated data as well as data on the effects of right heart catheterization. In Monte Carlo studies, ML-based estimators generated estimates with smaller bias than traditional regression approaches, demonstrating substantial (69 percent-98 percent) bias reduction in some scenarios. Bayesian Causal Forests and Double Machine Learning were top performers, although all were sensitive to high dimensional (>150) sets of covariates. ML-based methods are promising methods for estimating treatment effects, allowing for the inclusion of many covariates and automating the search for nonlinearities and interactions among variables. We provide guidance and sample code for researchers interested in implementing these tools in their own empirical work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.