Abstract
The selection of a method for estimating treatment effects in an intent-to-treat analysis from clinical trial data with missing values often depends on the field of practice. The last observation carried forward (LOCF) analysis assumes that the responses do not change after dropout. Such an assumption is often unrealistic. Analysis with completers only requires that missing values occur completely at random (MCAR). Ignorable maximum likelihood (IML) and multiple imputation (MI) methods require that data are missing at random (MAR). We applied these four methods to a randomized clinical trial comparing anti-depressant effects in an elderly depressed group of patients using a mixed model to describe the course of the treatment effects. Results from an explanatory approach showed a significant difference between the treatments using LOCF and IML methods. Statistical tests indicate violation of the MCAR assumption favoring the flexible IML and MI methods. IML and MI methods were repeated under the pragmatic approach, using data collected after termination of protocol treatment and compared with previously reported results using piecewise splines and rescue (treatment adjustment) pragmatic analysis. No significant treatment differences were found. We conclude that attention to the missing-data mechanism should be an integral part in analysis of clinical trial data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.