Abstract

AbstractIntelligent transportation systems (ITS) have been used to alleviate congestion problems arising due to demand during peak periods. The success of ITS strategies relies heavily on two factors: 1) the ability to accurately estimate the temporal and spatial distribution of travel demand on the transportation network during peak periods, and, 2) providing real‐time route guidance to users. This paper addresses the first factor. A model to estimate time dependent origin‐destination (O‐D) trip tables in urban areas during peak periods is proposed. The daily peak travel period is divided into several time slices to facilitate simulation and modeling. In urban areas, a majority of the trips during peak periods are work trips. For illustration purposes, only peak period work trips are considered in this paper. The proposed methodology is based on the arrival pattern of trips at a traffic analysis zone (TAZ) and the distribution of their travel times. The travel time matrix for the peak period, the O‐D trip table for the peak period, and the number of trips expected to arrive at each TAZ at different work start times are inputs to the model. The model outputs are O‐D trip tables for each time slice in the peak period. 1995 data for the Las Vegas metropolitan area are considered for testing and validating the model, and its application. The model is reasonably robust, but some lack of precision was observed. This is due to two possible reasons: 1) rounding‐off, and, 2) low ratio of total number of trips to total number of O‐D pair combinations. Hence, an attempt is made to study the effect of increasing this ratio on error estimates. The ratio is increased by multiplying each O‐D pair trip element with a scaling factor. Better estimates were obtained. Computational issues involved with the simulation and modeling process are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.