Abstract
In quantitative finance, we often model asset prices as a noisy Ito semimartingale. As this model is not identifiable, approximating by a time-changed Levy process can be useful for generative modelling. We give a new estimate of the normalised volatility or time change in this model, which obtains minimax convergence rates, and is unaffected by infinite-variation jumps. In the semimartingale model, our estimate remains accurate for the normalised volatility, obtaining convergence rates as good as any previously implied in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.