Abstract

In this chapter, we present recent findings from our group showing that elapsed time, interval timing, and rhythm maintenance might be achieved by the well-known ability of the brain to predict the future states of the world. The difference between predictions and actual sensory evidence is used to generate perceptual and behavioral adjustments that help subjects achieve desired behavioral goals. Concretely, we show that (1) accumulating prediction errors is a plausible strategy humans could use to determine whether a train of consecutive stimuli arrives at regular or irregular intervals. By analyzing the behavior of human and non-human primate subjects performing rhythm perception tasks, we demonstrate that (2) the ability to estimate elapsed time and internally maintain rhythms is shared across primates and humans. Neurophysiological recordings show that (3) the medial premotor cortex engages in rhythm entrainment and maintains oscillatory activity that reveals an internal metronome's spatial and temporal characteristics. Finally, we demonstrate that (4) the amplitude of gamma oscillations within this cortex increases proportionally to the total elapsed time. In conjunction with our most recent experiments, our results suggest that timing might be achieved by an internal simulation of the sensory stimuli and the motor commands that define the timing task that needs to be performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.