Abstract

Canada has more than 350 remote and northern communities, most of which rely on diesel for their electric and thermal needs. This reliance is deleterious to climate, health, albedo, and energy security—all diesel must be imported. The government is working to transition these communities to climate-friendly and sustainable alternatives, but assessments of this transition are hampered by limited data availability, especially the absence of hourly thermal load profiles. Here, we develop a method for estimating the thermal load profiles of these communities; apply it to 40 communities that vary across characteristics like population, location, accessibility, and Indigenous identity; and seek to validate these profiles with the few empirical data that exist. We also develop a model to predict the thermal load of a remote and northern community using limited, available information like population and location. This paper represents the first attempt to simulate hourly thermal load profiles for these communities. We find that thermal loads are large—the hourly thermal load can be up to 23 times the hourly electrical load in winter, which has implications for investment planning. Our research helps communities, investors, and analysts develop robust transition plans as they seek to decarbonize northern communities’ energy systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.