Abstract

Purpose – The purpose of this paper is to determine the magnitude and spatial distribution of the heat transfer coefficient between the workpiece and the backing plate in a friction stir welding process using inverse modelling. Design/methodology/approach – The magnitude and distribution of the heat transfer coefficient are the variables in an optimisation problem. The objective is to minimise the difference between experimentally measured temperatures and temperatures obtained using a 3D finite element model. The optimisation problem is solved using a gradient based optimisation method. This approach yields optimal values for the magnitude and distribution of the heat transfer coefficient. Findings – It is found that the heat transfer coefficient between the workpiece and the backing plate is non-uniform and takes its maximum value in a region below the welding tool. Four different parameterisations of the spatial distribution of the heat transfer coefficient are analysed and a simple, two parameter dist...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.