Abstract

This paper is concerned with estimation of the within-household infection rate γL for a susceptible --> infective --> recovered epidemic among a population of households, from observation of the early, exponentially growing phase of an epidemic. Specifically, it is assumed that an estimate of the exponential growth rate is available from general data on an emerging epidemic and more-detailed, household-level data are available in a sample of households. Estimates of γL obtained using the final size distribution of single-household epidemics are usually biased owing to the emerging nature of the epidemic. A new method, which accounts correctly for the emerging nature of the epidemic, is developed by exploiting the asymptotic theory of supercritical branching processes and proved to yield a strongly consistent estimator of γL as the population and sampled households both tend to infinity in an appropriate fashion. The theory is illustrated by simulations which demonstrate that the new method is feasible for finite populations and numerical studies are used to explore how changes to the parameters governing the spread of an epidemic affect the bias of estimates based on single-household final size distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.