Abstract

Abstract In this study, an effective method of estimating the volume transport of the Kuroshio Extension (KE) is proposed using surface geostrophic flow inferred from satellite altimetry and vertical stratification derived from climatological temperature/salinity (T/S) profiles. Based on velocity measurements by a subsurface mooring array across the KE, we found that the vertical structure of horizontal flow in this region is dominated by the barotropic and first baroclinic normal modes, which is commendably described by the leading mode of empirical orthogonal functions (EOFs) of the observed velocity profiles as well. Further analysis demonstrates that the projection coefficient of moored velocity onto the superimposed vertical normal mode can be represented by the surface geostrophic velocity as derived from satellite altimetry. Given this relationship, we proposed a dynamical method to estimate the volume transport across the KE jet, which is well verified with both ocean reanalysis and repeated hydrographic data. This finding implicates that, in the regions where the currents render quasi-barotropic structure, it takes only satellite altimetry observation and climatological T/S to estimate the volume transport across any section. Significance Statement The Kuroshio Extension (KE) plays an important role in the midlatitude North Pacific climate system. To better understand the KE dynamic and its influences, it is very important to estimate the KE transport. However, direct observation is very difficult in this area. Combining a subsurface mooring array and climatological temperature/salinity data, the vertical structure of the KE is explored in this study using mode decomposition methods. The relationship between the vertical structure of the zonal velocity and surface geostrophic flow observed by satellite altimetry in the KE region is further investigated. Based on this relationship, the KE transport can be well estimated by using satellite altimetry observation and historical hydrographic observation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call