Abstract
For stationary sequences, under general dependence restrictions, any limiting point process for time normalized upcrossings of high levels is a compound Poisson process, i.e., there is a clustering of high upcrossings, where the underlying Poisson points represent cluster positions and the multiplicities correspond to cluster sizes. For such classes of stationary sequences, there exists the upcrossings index η, 0≤η≤1, which is directly related to the extremal index θ, 0≤θ≤1, for suitable high levels. In this paper, we consider the problem of estimating the upcrossings index η for a class of stationary sequences satisfying a mild oscillation restriction. For the proposed estimator, properties such as consistency and asymptotic normality are studied. Finally, the performance of the estimator is assessed through simulation studies for autoregressive processes and case studies in the fields of environment and finance. Comparisons with other estimators derived from well known estimators of the extremal index are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.