Abstract

A framework for estimating the ultimate undrained steady state shear strength of sand (Su) from in situ tests, which combines the theory of critical state soil mechanics with shear wave velocity measurements, is presented. For a particular direction of undrained loading, samples of a given sand at a constant void ratio will reach the same Su, despite the magnitude of the initial effective confining stresses. Unique Su/p′ or [Formula: see text] ratios for a given direction of loading exist for a particular sand only if state parameter is constant throughout the deposit. Normalized shear wave velocity, Vs1, can be correlated with void ratio and is therefore used to estimate Su for a given initial state and direction of loading. Strengths in triaxial compression are examined in this paper; however, the same framework can be used to estimate strengths under other directions of loading. The Su–Vs1 relationship is shown to be relatively sensitive and should be used more as a screening tool rather than an accurate means of predicting Su. Vs1 is converted to equivalent values of SPT (N1)60 and CPT qc1, and the results are compared with the current methods of estimating Su. Key words : in situ testing, liquefaction, sand, undrained strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call