Abstract

The problem of state estimation of spreading phenomena in complex networks is considered on the basis of a detectability-based approach. Using a simple, reduced model based state distribution estimator, where the monitored nodes are driven directly by the measured data, asymptotic convergence conditions are provided in terms of the number and location of the required sensors on the basis of the network topology. The convergence of the estimator is established in terms of the largest eigenvalue of a reduced connectivity matrix which stems from removing the monitored nodes and their connections from the original graph. In the case of unit weights, this condition corresponds to measuring the nodes with highest degree. Numerical simulations for a complete and a scale-free network each of 500 nodes and randomly distributed and unit weights, respectively, illustrate the estimator functioning with 20 sensors for the complete, and 38 sensors for the scale-free network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.