Abstract

A co-prime sensor array (CSA) is a nonuniform line array formed by interleaving two undersampled uniform line arrays. The CSA requires fewer sensors to span the same aperture as a densely sampled uniform line array (ULA), allowing the CSA to match the resolution of the ULA for direction of arrival estimation of narrowband planewaves. However, each CSA subarray suffers from aliasing, or grating lobes, due to the spatial undersampling. Vaidyanathan and Pal (2011) proved that if the subarray undersampling factors are co-prime, the aliasing can be unambiguously resolved by multiplying the spatial spectra of the subarrays. This product spatial spectra is the spatial cross-spectral density between the arrays, and is an estimate of the spatial power spectral density (PSD). In this talk, we extend the classic results of Jenkins and Watts (1968) on the periodogram PSD estimator for Gaussian processes to obtain the product processor's bias for spatially wide-sense stationary processes, and the processor's covariance for spatially white Gaussians. Additionally, we demonstrate that the CSA's product PSD estimate is not necessarily positive definite. Consequently, the CSA product spectrum may fail to detect weak signals in the presence of strong interferers. [Work supported by ONR BRC Program.]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.