Abstract

Outbreaks of arbovirus infections vectored by invasive Aedes albopictus have already occurred and are predicted to become increasingly frequent in Southern Europe. We present a probabilistic model to assess risk of arbovirus outbreaks based on incident cases worldwide, on the probability of arrival of infected travelers, and on the abundance of the vector species. Our results show a significant risk of Chikungunya outbreak in Rome from mid June to October in simulations with high human biting rates (i.e. when ≥50% of the population is bitten every day). The outbreak risk is predicted to be highest for Chikungunya and null for Zika. Simulated increase of incident cases in selected endemic countries has no major impact on the outbreak risk. The model correctly estimated the number of imported cases and can be easily adapted to other urban areas where Ae. albopictus is the only potential vector present.

Highlights

  • Arboviruses are neglected human pathogens responsible of a large burden of morbidity especially in tropical and subtropical regions where mosquito species are abundant[1]

  • We present a probabilistic model to assess the risk of CHIKV, DENV and ZIKV outbreaks in Rome based on actual data on the abundance of the vector species, Ae. albopictus, as well as on estimates of risk of virus introduction via the large flow of travelers through the international airport of Rome Fiumicino (FCO)

  • In order to assess the risk of exotic arbovirus outbreak in Rome under different scenarios of human biting rates (HBR), we first predicted the weekly risk of autochthonous transmission and the probability of introduction of an infected traveler from endemic countries

Read more

Summary

Introduction

Arboviruses (arthropod-borne viruses) are neglected human pathogens responsible of a large burden of morbidity especially in tropical and subtropical regions where mosquito species are abundant[1]. In Europe, recent DENV outbreaks were recorded in France[3,4] and Croatia[5] while outbreaks of CHIKV were recorded in France[6] and Italy[7,8] Not surprisingly, all these events took place in Southern Europe (Euro-Mediterranean region), where a stable and extensive colonization by the Asian tiger mosquito Aedes albopictus creates permissive conditions for transmission. We present a probabilistic model to assess the risk of CHIKV, DENV and ZIKV outbreaks in Rome based on actual data on the abundance of the vector species, Ae. albopictus, as well as on estimates of risk of virus introduction via the large flow of travelers through the international airport of Rome Fiumicino (FCO)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.