Abstract

BackgroundThe majority of eyewitness lineup studies are laboratory-based. How well the conclusions of these studies, including the relationship between confidence and accuracy, generalize to real-world police lineups is an open question. Signal detection theory (SDT) has emerged as a powerful framework for analyzing lineups that allows comparison of witnesses’ memory accuracy under different types of identification procedures. Because the guilt or innocence of a real-world suspect is generally not known, however, it is further unknown precisely how the identification of a suspect should change our belief in their guilt. The probability of guilt after the suspect has been identified, the posterior probability of guilt (PPG), can only be meaningfully estimated if we know the proportion of lineups that include a guilty suspect, P(guilty). Recent work used SDT to estimate P(guilty) on a single empirical data set that shared an important property with real-world data; that is, no information about the guilt or innocence of the suspects was provided. Here we test the ability of the SDT model to recover P(guilty) on a wide range of pre-existing empirical data from more than 10,000 identification decisions. We then use simulations of the SDT model to determine the conditions under which the model succeeds and, where applicable, why it fails.ResultsFor both empirical and simulated studies, the model was able to accurately estimate P(guilty) when the lineups were fair (the guilty and innocent suspects did not stand out) and identifications of both suspects and fillers occurred with a range of confidence levels. Simulations showed that the model can accurately recover P(guilty) given data that matches the model assumptions. The model failed to accurately estimate P(guilty) under conditions that violated its assumptions; for example, when the effective size of the lineup was reduced, either because the fillers were selected to be poor matches to the suspect or because the innocent suspect was more familiar than the guilty suspect. The model also underestimated P(guilty) when a weapon was shown.ConclusionsDepending on lineup quality, estimation of P(guilty) and, relatedly, PPG, from the SDT model can range from poor to excellent. These results highlight the need to carefully consider how the similarity relations between fillers and suspects influence identifications.

Highlights

  • Witnesses to crimes can provide crucial information to police investigators

  • A key step in answering this question is to determine the probability that the suspect is guilty before the witness provides an identification. This probability is the base rate of lineups that include the culprit, or guilty suspect, which can have a profound impact on the appropriate evaluation of an eyewitness identification in a courtroom

  • This work paves the way to estimating the base rate of guilty suspects in real-world lineups

Read more

Summary

Introduction

Witnesses to crimes can provide crucial information to police investigators. Tragically, the identification of a suspect as the culprit can be simultaneously erroneous and compelling to the jury. What we would like to know is the probability that the suspect is guilty, given that they have been identified by the witness. This value is called the positive predictive value (PPV) or the posterior probability of guilt (PPG, Wells & Lindsay, 1980; Wells, Yang, and Smalarz, 2015). The probability of guilt after the suspect has been identified, the posterior probability of guilt (PPG), can only be meaningfully estimated if we know the proportion of lineups that include a guilty suspect, P(guilty). Recent work used SDT to estimate P(guilty) on a single empirical data set that shared an important property with real-world data; that is, no information about the guilt or innocence of the suspects was provided. We use simulations of the SDT model to determine the conditions under which the model succeeds and, where applicable, why it fails

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call