Abstract

Abstract Cascade use has been identified as a key concept towards the sustainable use of bio-based products aiming at the hierarchical utilization of biomass, first as materials; secondly recycled into new materials; and finally used energetically. This principle is plausible in theory. However, the quantification of economy-wide GHG savings due to the increased cascade use is scarce. Furthermore, another option to reduce GHG emissions – the extension of product lifetime – is not taken into consideration by this concept. This article aims at analyzing the potential of increasing the cascade use of wood products in Germany and contrasting the results with the extension of product lifetime. In doing so, we combine a disaggregated input–output model with a cumulative lifetime model. Results show that increased cascade use of wood products may reduce the current total GHG emissions in Germany at about 0.19% (1.68 ± 0.34 Mt CO2eq.). Lifetime extension seems not to have such a high reduction potential at about 0.04% (0.35 ± 0.06 Mt CO2eq.). Despite limited GHG reduction potentials of increased cascade use and lifetime extension, nevertheless, these concepts should be addressed by policy makers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call