Abstract

Two maximum likelihood methods for estimating the parameters of stochastic differential equations (SDEs) from time-series data are proposed. The first is that of simulated maximum likelihood in which a nonparametric kernel is used to construct the transitional density of an SDE from a series of simulated trials. The second approach uses a spectral technique to solve the Kolmogorov equation satisfied by the transitional probability density. The exact likelihood function for a geometric random walk is used as a benchmark against which the performance of each method is measured. Both methods perform well with the spectral method returning results which are practically identical to those derived from the exact likelihood. The technique is illustrated by modelling interest rates in the UK gilts market using a fundamental one-factor term-structure equation for the instantaneous rate of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.