Abstract

We show that the long-time behavior of the projection of the exact solutions to the Navier-Stokes equations and other dissipative evolution equations on the finite-dimensional space of interpolant polynomials determines the long-time behavior of the solution itself provided that the spatial mesh is fine enough. We also provide an explicit estimate on the size of the mesh. Moreover, we show that if the evolution equation has an inertial manifold, then the dynamics of the evolution equation is equivalent to the dynamics of the projection of the solutions on the finite-dimensional space spanned by the approximating polynomials. Our results suggest that certain numerical schemes may capture the essential dynamics of the underlying evolution equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.