Abstract
In this paper, we propose a Padé-type approximation based on truncated total least squares (P – TTLS) and compare it with three commonly used smoothing methods: Penalized spline, Kernel smoothing and smoothing spline methods that have become very powerful smoothing techniques in the nonparametric regression setting. We consider the nonparametric regression model, and discuss how to estimate smooth regression function g where we are unsure of the underlying functional form of g. The Padé approximation provides a linear model with multi-collinearities and errors in all its variables. The P – TTLS method is primarily designed to address these issues, especially for solving error-contaminated systems and ill-conditioned problems. To demonstrate the ability of the method, we conduct Monte Carlo simulations under different conditions and employ a real data example. The outcomes of the experiments show that the fitted curve solved by P – TTLS is superior to and more stable than the benchmarked penalized spline (B – PS), Kernel smoothing (KS) and smoothing spline (SS) techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.