Abstract

Estimating the nitrogen (N) status of plants as a function of their spectral response is a promising technique to diagnose and optimize N fertilization. An experiment was conducted in Jiquilpan (Michoacán, México) in which three N levels (0.3, 3, and 20 mM of NO3 − in the irrigation water) were applied to strawberry (Fragaria vesca) in a randomized complete block design with three replicates. The spectral response of strawberry was measured at both the canopy and leaf level using individual wavebands as well as vegetation indices. Individual leaves were separated into three strata (young, mature, and old) and leaf dry matter, leaf area, and N content (% dry matter) were measured in each stratum. Leaf area, biomass, and N content differed significantly between strata. Leaf area, biomass, and N content in all strata were affected by N fertilization. At the canopy level, N content was highly correlated with green reflectance (R550) (r2=0.50) and red reflectance (R680) (r2=0.60) as well as the vegetation indices simple ratio (SR) (r2=0.56), normalized difference vegetation index (NDVI) (r2=0.56), and hyperspectral NDVI (HNDVI) (r2=0.56). For individual leaves, significant differences between strata were found with normalized total pigment to chlorophyll a ratio index (NPCI) and MERIS terrestrial chlorophyll index (MTCI) (p<0.001) as well as R550, photochemical reflectance index (PRI), red edge position (REP), and REP calculated using the MERIS satelite wavelengths (p<0.01). Relationships between spectral indices and N content at the leaf level were found with the youngest leaves only, with NPCI (p<0.01) and MTCI (p<0.05), whereas only R550 responded to N fertilization (p<0.05).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call