Abstract

BackgroundDetermining reliable evolutionary rates of molecular markers is essential in illustrating historical episodes with phylogenetic inferences. Although emerging evidence has suggested a high evolutionary rate for intraspecific genetic variation, it is unclear how long such high evolutionary rates persist because a recent calibration point is rarely available. Other than using fossil evidence, it is possible to estimate evolutionary rates by relying on the well-established temporal framework of the Quaternary glacial cycles that would likely have promoted both rapid expansion events and interisland dispersal events.ResultsWe examined mitochondrial cytochrome b (Cytb) and control region (CR) gene sequences in two Japanese wood mouse species, Apodemus argenteus and A. speciosus, of temperate origin and found signs of rapid expansion in the population from Hokkaido, the northern island of Japan. Assuming that global warming after the last glacial period 7–10 thousand years before present (kyr BP) was associated with the expansion, the evolutionary rates (sites per million years, myr) of Cytb and CR were estimated as 11–16 % and 22–32 %, respectively, for A. argenteus, and 12–17 % and 17–24 %, respectively, for A. speciosus. Additionally, the significant signature of rapid expansion detected in the mtDNA sequences of A. speciosus from the remaining southern main islands, Honshu, Shikoku, and Kyushu, provided an estimated Cytb evolutionary rate of 3.1 %/site/myr under the assumption of a postglacial population expansion event long ago, most probably at 130 kyr BP. Bayesian analyses using the higher evolutionary rate of 11–17 %/site/myr for Cytb supported the recent demographic or divergence events associated with the Last Glacial Maximum. However, the slower evolutionary rate of 3.1 %/site/myr would be reasonable for several divergence events that were associated with glacial periods older than 130 kyr BP.ConclusionsThe faster and slower evolutionary rates of Cytb can account for divergences associated with the last and earlier glacial maxima, respectively, in the phylogenetic inference of murine rodents. The elevated evolutionary rate seemed to decline within 100,000 years.

Highlights

  • Determining reliable evolutionary rates of molecular markers is essential in illustrating historical episodes with phylogenetic inferences

  • The slower evolutionary rate of 3.1 %/site/myr would be reasonable for several divergence events that were associated with glacial periods older than 130 kyr BP

  • The faster and slower evolutionary rates of cytochrome b (Cytb) can account for divergences associated with the last and earlier glacial maxima, respectively, in the phylogenetic inference of murine rodents

Read more

Summary

Introduction

Determining reliable evolutionary rates of molecular markers is essential in illustrating historical episodes with phylogenetic inferences. Emerging evidence has suggested a high evolutionary rate for intraspecific genetic variation, it is unclear how long such high evolutionary rates persist because a recent calibration point is rarely available. To analyze evolutionary history on a recent timescale, substantially higher rates [e.g., 38.9 or 40 %/site/million years (myr)] in the mtDNA control region (CR) have been proposed in studies of rodents such as the field vole (Microtus agrestis [5]) and house mouse (Mus musculus [6]), based on paleoclimatological and/or geological events using Bayesian inferences, contrary to the rates “traditionally” used for mammals Site/myr; [7, 8]) How long such a high evolutionary rate is applicable [9, 10] remains unclear due to the lack of reliable calibration points, such as fossil evidence below the species level. In Eurasia, wood mice (Apodemus spp.) are widely distributed throughout temperate and subarctic regions, and their evolution has been spurred by habitat topography and the expansion of the temperate zone in the Tertiary period [11,12,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call