Abstract

Chemical mechanical polishing (CMP) is an essential process in semiconductor fabrication. The results of CMP process are determined with the selection of consumables and process parameters. The polishing pad transports the slurry to the interface between the polishing pad and wafer and obtains material removal planarity. The mechanical properties of the polishing pad should be studied to analyze the material removal mechanism of CMP because polishing pad deformation is directly related to material removal rate and its uniformity. Various studies have investigated the stress distribution of the CMP process by using the elastic modulus and Poisson’s ratio of the polishing pad. However, these aspects of polishing pad have not been fully elucidated. In this study, we estimated the mechanical properties of commercial polyurethane-impregnated felt pads by comparing the experimentally measured compressive deformation amounts with finite element analysis results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call