Abstract
It is known that the MAXIMUM HIDDEN VERTEX SET problem on a given simple polygon is NP-hard [11], therefore we focused on the development of approximation algorithms to tackle it. We propose four strategies to solve this problem, the first two (based on greedy constructive search) are designed specifically to solve it, and the other two are based on the general metaheuristics Simulated Annealing and Genetic Algorithms. We conclude, through experimentation, that our best approximate algorithm is the one based on the Simulated Annealing metaheuristic. The solutions obtained with it are very satisfactory in the sense that they are always close to optimal (with an approximation ratio of 1.7, for arbitrary polygons; and with an approximation ratio of 1.5, for orthogonal polygons). We, also, conclude,that on average the maximum number of hidden vertices in a simple polygon (arbitrary or orthogonal) with n vertices is n/4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.