Abstract
The inverse probability weighted Cox model is frequently used to estimate the marginal hazard ratio. Its validity requires a crucial condition that the propensity score model be correctly specified. To provide protection against misspecification of the propensity score model, we propose a weighted estimation method rooted in the empirical likelihood theory. The proposed estimator is multiply robust in that it is guaranteed to be consistent when a set of postulated propensity score models contains a correctly specified model. Our simulation studies demonstrate satisfactory finite sample performance of the proposed method in terms of consistency and efficiency. We apply the proposed method to compare the risk of postoperative hospitalization between sleeve gastrectomy and Roux-en-Y gastric bypass using data from a large medical claims and billing database. We further extend the development to multisite studies to enable each site to postulate multiple site-specific propensity score models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.