Abstract

In this paper we estimate income distributions, Lorenz curves and the related Gini index using a Bayesian nonparametric approach based on Polya tree priors. In particular, we propose an alternative approach for dealing with contaminated observations and extreme income values: avoiding the common practise that removes these critical data, we instead treat them as censored observations and apply a Polya tree model for incomplete data. The proposed method is illustrated through an empirical application based on the European Survey on Income Living Conditions data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.