Abstract
Proteins can evolve by accumulating changes on amino acid sequences. These changes are mainly caused by missense mutations on its DNA coding sequences. Mutations with neutral or positive effects on fitness can be maintained while deleterious mutations tend to be eliminated by natural selection. Amino acid changes are influenced by the biophysical, chemical, and biological properties of amino acids. There is a multiplicity of amino acid properties that can influence the function and expression of proteins. Amino acid properties can be expressed into numerical indexes, which can help to predict functional and structural aspects of proteins and allow statistical inferences of selection pressure on amino acid usage. The accuracy of these analyses may be compromised by the existence of several numerical indexes that measure the same amino acid property, and the lack of objective parameters to determine the most accurate and biologically relevant index. In the present study, the gradient consistency test was used in order to estimate the magnitude of directional selection imparted by amino acid biochemical and biophysical properties on protein evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.