Abstract

Switching from liquid fuels to electricity in the transportation and heating sectors can result in greenhouse gas emissions reductions. These reductions are maximized when electricity-sector carbon emissions are constrained through policy measures. We use a linear optimization, generation expansion/dispatch model to evaluate the impact of increased electricity demand for plug-in electric vehicle charging on the generating portfolio, overall generating fuel mix, and the costs of electricity generation. We apply this model to the PJM Interconnect and ISO-New England Regional Transmission Organization service areas assuming a CO2 pricing scheme that is applied to the electricity sector but does not directly regulate emissions from other sectors. We find that a shift from coal toward natural gas and wind generation is sufficient to achieve a 50% reduction in electricity-sector CO2 emissions while supporting vehicle charging for 25% of the vehicle fleet. The price impacts of these shifts are sensitive to demand side price responsiveness and the capital costs of new wind construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.