Abstract
The image spectrum signal-to-noise ratio (SNR) provides a means of estimating the noise effective spatial resolution of an imaging system and a means of estimating the highest spatial frequency which can be reconstructed with a postdetection image reconstruction algorithm. Previous work has addressed the effects of aerosol scattering on the overall point spread function (PSF). Here, we seek to extend these results to also account for the effects of measurement noise and to then estimate the noise effective resolution of the system, which accounts for scattering effects on the PSF and measurement noise in the detector. We use a previously published approach to estimating the effective PSF and radiometric calculations to estimate the mean numbers of direct and scattered photons detected by an imaging system due to reflected radiation in the visible and near-infrared, and emitted radiation in mid-infrared (MIR) band, for a horizontal near-ground imaging scenario. The analysis of the image spectrum SNR presented here shows a reduction in the value of noise effective cutoff spatial frequency for images taken through fog aerosol media, and hence emphasizes the degrading effect of fog aerosol models on the spatial resolution of imaging systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.