Abstract

Knowledge of the rate and pattern of new mutation is critical to the understanding of human disease and evolution. We used extensive autozygosity in a genealogically well-defined population of Hutterites to estimate the human sequence mutation rate over multiple generations. We sequenced whole genomes from 5 parent-offspring trios and identified 44 segments of autozygosity. Using the number of meioses separating each pair of autozygous alleles and the 72 validated heterozygous single-nucleotide variants (SNVs) from 512 Mb of autozygous DNA, we obtained an SNV mutation rate of 1.20 × 10(-8) (95% confidence interval 0.89-1.43 × 10(-8)) mutations per base pair per generation. The mutation rate for bases within CpG dinucleotides (9.72 × 10(-8)) was 9.5-fold that of non-CpG bases, and there was strong evidence (P = 2.67 × 10(-4)) for a paternal bias in the origin of new mutations (85% paternal). We observed a non-uniform distribution of heterozygous SNVs (both newly identified and known) in the autozygous segments (P = 0.001), which is suggestive of mutational hotspots or sites of long-range gene conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.