Abstract
This work aims to provide a thermodynamic modeling to determine the high heating value (HHV) of food samples, particularly high-calorie food. The HHV is measured experimentally, and a rigorous model is constructed from these data. A bomb calorimeter under controlled conditions is used to experimentally determine the HHV of four commercial snacks (Twix, Snickers, Peanut Planters, and KitKat). The samples are characterized by ultimate analysis. The rigorous modeling is developed using a modified Peng-Robinson (PR) Equation of State (EoS) developed by Forero-Velásquez (FV). Also, mass and energy balances, vapor-liquid equilibria equations, and the reaction speed rate are stated. The results indicate that the average absolute deviation between the nutritional information label and rigorous modeling is 6.54%. Also, an equation is suggested for rapid estimation of HHV using data from rigorous modeling. The results show that the developed linear equation is simpler and provides an absolute relative deviation of 11.04% compared to other sophisticated or multiparametric reported literature models with deviations of 16.62%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.