Abstract

Optimization methods that use gradients require initial estimates of the Hessian or second derivative matrix; the more accurate the estimate, the more rapid the convergence. For geometry optimization, an approximate Hessian or force constant matrix is constructed from a simple valence force field that takes into account the inherent connectivity and flexibility of the molecule. Empirical rules are used to estimate the diagonal force constants for a set of redundant internal coordinates consisting of all stretches, bends, torsions and out-of-plane deformations involving bonded atoms. The force constants are transformed from the redundant internal coordinates to Cartesian coordinates, and then from Cartesian coordinates to the non-redundant internal coordinates used in the specification of the geometry and optimization. This method is especially suitable for cyclic molecules. Problems associated with the choice of internal coordinates for geometry optimization are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.