Abstract

PM2.5 is the main component of haze, and PM2.5-bound heavy metals (PBHMs) can induce various toxic effects via inhalation. However, comprehensive macroanalyses on large scales are still lacking. In this study, we compiled a substantial dataset consisting of the concentrations of eight PBHMs, including As, Cd, Cr, Cu, Mn, Ni, Pb and Zn, across different cities in China. To improve prediction accuracy, we enhanced the traditional land-use regression (LUR) model by incorporating emission source-related variables and employing the best-fitted machine-learning algorithm, which was applied to predict PBHM concentrations, analyze geographical patterns and assess the health risks associated with metals under different PM2.5 control targets. Our model exhibited excellent performance in predicting the concentrations of PBHMs, with predicted values closely matching measured values. Noncarcinogenic risks exist in 99.4% of the estimated regions, and the carcinogenic risks in all studied regions of the country are within an acceptable range (1 × 10−5–1 × 10−6). In densely populated areas such as Henan, Shandong, and Sichuan, it is imperative to control the concentration of PBHMs to reduce the number of patients with cancer. Controlling PM2.5 effectively decreases both carcinogenic and noncarcinogenic health risks associated with PBHMs, but still exceed acceptable risk level, suggesting that other important emission sources should be given attention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.