Abstract
We provide a method for estimating the genome-wide mutation rate from sequence data on unrelated individuals by using segments of identity by descent (IBD). The length of an IBD segment indicates the time to shared ancestor of the segment, and mutations that have occurred since the shared ancestor result in discordances between the two IBD haplotypes. Previous methods for IBD-based estimation of mutation rate have required the use of family data for accurate phasing of the genotypes. This has limited the scope of application of IBD-based mutation rate estimation. Here, we develop an IBD-based method for mutation rate estimation from population data, and we apply it to whole-genome sequence data on 4,166 European American individuals from the TOPMed Framingham Heart Study, 2,996 European American individuals from the TOPMed My Life, Our Future study, and 1,586 African American individuals from the TOPMed Hypertension Genetic Epidemiology Network study. Although mutation rates may differ between populations as a result of genetic factors, demographic factors such as average parental age, and environmental exposures, our results are consistent with equal genome-wide average mutation rates across these three populations. Our overall estimate of the average genome-wide mutation rate per 108 base pairs per generation for single-nucleotide variants is 1.24 (95% CI 1.18-1.33).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.