Abstract

Due to the ringing and side-lobe interference, acoustic Doppler current profiler (ADCP) is unable to accurately capture the complete velocity profile in open channels near the water surface and channel bottom, which are usually called unmeasured areas. At present, the flow velocities through the unmeasured areas are most commonly estimated using the power law with the power set to be the default value. However, since the flows are unsteady and nonuniform in tidal reaches, the velocity distribution model and corresponding parameters will vary with the bathymetric, tide period, etc. Therefore, the most common estimation with the power law may not be suitable in tidal reaches. In this paper, a simple determination method of the best model is proposed. Firstly, the parameters in three classical velocity distribution models, which are called power law, logarithmic law and parabolic law models, are solved by least squares based on the ADCP measured velocity cells. Then, the corresponding root-mean-square error (RMSE) of each model is used for the quantitative indicator that the model with the minimum RMSE is chosen as the best model. At last, the flow velocity and discharge of the unmeasured area are estimated by the best model. The experiments carried out in the tidal reach of Yangtze Estuary showed that vertical flow velocity distribution various with the bathymetry and tide period, and the best models averagely improved about 2.0% of the relative standard deviation (RSD) relative to the power law method in the discharge estimation, especially at some tide period the RSD of the best model was several times better than that of power law model. For Yangtze River with an annual average discharge of 3.0×104m3/s, the improvement should not be ignored. Therefore, it will be necessary to use the best model with minimum RMSE to estimate the flow velocity in tidal reach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call