Abstract

Background. The expected value of sample information (EVSI) determines the economic value of any future study with a specific design aimed at reducing uncertainty about the parameters underlying a health economic model. This has potential as a tool for trial design; the cost and value of different designs could be compared to find the trial with the greatest net benefit. However, despite recent developments, EVSI analysis can be slow, especially when optimizing over a large number of different designs. Methods. This article develops a method to reduce the computation time required to calculate the EVSI across different sample sizes. Our method extends the moment-matching approach to EVSI estimation to optimize over different sample sizes for the underlying trial while retaining a similar computational cost to a single EVSI estimate. This extension calculates the posterior variance of the net monetary benefit across alternative sample sizes and then uses Bayesian nonlinear regression to estimate the EVSI across these sample sizes. Results. A health economic model developed to assess the cost-effectiveness of interventions for chronic pain demonstrates that this EVSI calculation method is fast and accurate for realistic models. This example also highlights how different trial designs can be compared using the EVSI. Conclusion. The proposed estimation method is fast and accurate when calculating the EVSI across different sample sizes. This will allow researchers to realize the potential of using the EVSI to determine an economically optimal trial design for reducing uncertainty in health economic models. Limitations. Our method involves rerunning the health economic model, which can be more computationally expensive than some recent alternatives, especially in complex models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.