Abstract

The 1.60 Ma caldera-forming eruption of the Otowi Member of the Bandelier Tuff produced Plinian and coignimbrite fall deposits, outflow and intracaldera ignimbrite, all of it deposited on land. We present a detailed approach to estimating and reconstructing the original volume of the eroded, partly buried large ignimbrite and distal ash-fall deposits. Dense rock equivalent (DRE) volume estimates for the eruption are 89 + 33/−10 km3 of outflow ignimbrite and 144 ± 72 km3 of intracaldera ignimbrite. Also, there was at least 65 km3 (DRE) of Plinian fall when extrapolated distally, and 107 + 40/−12 km3 of coignimbrite ash was “lost” from the outflow sheet to form an unknown proportion of the distal ash fall. The minimum total volume is 216 km3 and the maximum is 550 km3; hence, the eruption overlaps the low end of the super-eruption spectrum (VEI ∼8.0). Despite an abundance of geological data for the Otowi Member, the errors attached to these estimates do not allow us to constrain the proportions of intracaldera (IC), outflow (O), and distal ash (A) to better than a factor of three. We advocate caution in applying the IC/O/A = 1:1:1 relation of Mason et al. (2004) to scaling up mapped volumes of imperfectly preserved caldera-forming ignimbrites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call