Abstract
We consider semiparametric additive regression models with a linear parametric part and a nonparametric part, both involving multivariate covariates. For the nonparametric part we assume two models. In the first, the regression function is unspecified and smooth; in the second, the regression function is additive with smooth components. Depending on the model, the regression curve is estimated by suitable least squares methods. The resulting residual-based empirical distribution function is shown to differ from the error-based empirical distribution function by an additive expression, up to a uniformly negligible remainder term. This result implies a functional central limit theorem for the residual-based empirical distribution function. It is used to test for normal errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.