Abstract
Causal inference methods allow estimation of the effects of potential public health interventions on the population burden of disease. Motivated by calls for epidemiologic research to be presented in ways that are more informative for intervention, the authors present a didactic discussion of the steps required to estimate the population effect of a potential intervention using an imputation-based causal inference method and discuss the assumptions of and limitations to its use. An analysis of neighborhood smoking norms and individual smoking behavior is used as an illustration. The implementation steps include the following: 1) modeling the adjusted exposure and outcome association, 2) imputing the outcome probability for each individual while manipulating the exposure by "setting" it to different values, 3) averaging these probabilities across the population, and 4) bootstrapping confidence intervals. Imputed probabilities represent counterfactual estimates of the population smoking prevalence if neighborhood smoking norms could be manipulated through intervention. The degree to which temporal ordering, randomization, stability, and experimental treatment assignment assumptions are met in the illustrative example is discussed, along with ways that future studies could be designed to better meet the assumptions. With this approach, the potential effects of an intervention targeting neighborhoods, individuals, or other units can be estimated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.