Abstract

Abstract One open question in El Nino–Southern Oscillation (ENSO) simulation and predictability is the role of random forcing by atmospheric variability with short correlation times, on coupled variability with interannual timescales. The discussion of this question requires a quantitative assessment of the stochastic component of the wind stress forcing. Self-consistent estimates of this noise (the stochastic forcing) can be made quite naturally in an empirical atmospheric model that uses a statistical estimate of the relationship between sea surface temperature (SST) and wind stress anomaly patterns as the deterministic feedback between the ocean and the atmosphere. The authors use such an empirical model as the atmospheric component of a hybrid coupled model, coupled to the GFDL ocean general circulation model. The authors define as residual the fraction of the Florida State University wind stress not explained by the empirical atmosphere run from observed SST, and a noise product is constructed by ran...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.