Abstract
Although control charts can notify the state of out-of-control in a process by generating a signal, the indication is usually followed by a considerable amount of delay. Identifying the real time of the change in a process would provide a starting point for further investigation of an assignable cause. This paper addresses the problem of detecting the change point in different processes when the quality characteristics drift steadily away from an in-control state. For this purpose, a fuzzy statistical clustering (FSC) method is used to estimate the drift time in different processes. Since the application of an FSC method requires both in- and out-of-control values of the process parameter, a linear regression model is utilised to estimate the trend rate and then calculate the out-of-control process parameter. Through extensive simulations, the performance of the proposed change point estimation method is analysed and compared with the most recent estimators for several control charts. The results demonstrate that the proposed method is more effective in detecting the drift time through a wide range of trend rates. Furthermore, it is shown that the proposed method offers a higher estimation precision compared to conventional statistical methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.