Abstract

We consider the growth-fragmentation equation and we address the problem of estimating the division rate from the stable size distribution of the population, which is easily measured, but non-smooth. We propose a method based on the Mellin transform for growth-fragmentation equations with self-similar kernels. We build a sequence of functions which converges to the density of the population in division, simultaneously in several weighted spaces, as the measurement error goes to 0. This improves the previous results for self-similar kernels and allows us to understand the partial results for general fragmentation kernels. Numerical simulations confirm the theoretical results. Moreover, our numerical method is tested on real biological data, arising from a bacteria growth and fission experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.