Abstract

Let $K$ be a simplicial complex and suppose that $K$ collapses onto $L$. Define $n$ to be $1$ less than the minimum number of collapsible sets it takes to cover $L$. Then the discrete geometric Lusternik-Schnirelmann category of $K$ is the smallest $n$ taken over all such $L$. In this paper, we give an algorithm which yields an upper bound for the discrete geometric category. We show our algorithm is correct and give several bounds for the discrete geometric category of well-known simplicial complexes. We show that the discrete geometric category of the dunce cap is $2$, implying that the dunce cap is ``further" from being collapsible than Bing's house whose discrete geometric category is $1$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.