Abstract
The direct-to-reverberant ratio (DRR), which describes the energy ratio between the direct and reverberant component of a soundfield, is an important parameter in many audio applications. In this paper, we present a multichannel algorithm, which utilizes the blind recordings of a spherical microphone array to estimate the DRR of interest. The algorithm is developed based on a spatial correlation model formulated in the spherical harmonics domain. This model expresses the cross correlation matrix of the recorded soundfield coefficients in terms of two spatial correlation matrices, one for direct sound and the other for reverberation. While the direct path arrives from the source, the reverberant path is considered to be a nondiffuse soundfield with varying directional gains. The direct and reverberant sound energies are estimated from the aforementioned spatial correlation model, which then leads to the DRR estimation. The practical feasibility of the proposed algorithm was evaluated using the speech corpus of the acoustic characterization of environments challenge. The experimental results revealed that the proposed method was able to effectively estimate the DRR of a large collection of reverberant speech recordings including various environmental noise types, room types and speakers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.