Abstract

When allocating tolerances to geometric features of machine parts, a target variation must be specified for some functional requirements on the assembly. Such decision, however, is usually made from experience without consideration of its effect on manufacturing cost. To allow such an assessment, the paper describes a method for estimating the cost of a requirement as a function of its variation. The estimation can be done before solving a tolerance allocation problem, at the time the variation on the requirement is chosen as an optimization constraint. A simple expression for the cost of requirements of various types is obtained using the extended reciprocal-power function for the cost of part tolerances, and the optimal scaling method for tolerance allocation. As a result, the costs of both requirement variations and part tolerances can be treated in the same way; this allows a hierarchical approach to tolerance allocation, which can simplify the problem when dealing with complex dimension chains. Furthermore, simple calculations based on the proposed method suggest general cost reduction criteria in the design of assemblies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call