Abstract

Gymnodinium catenatum, a dinoflagellate species with a global distribution, is known to produce paralytic shellfish poisoning (PSP) toxins. The profile of toxins of G. catenatum is commonly dominated by sulfocarbamoyl analogs including the C3+4 and GTX6, which to date has no commercial certified reference materials necessary for their quantification via chemical methods, such as liquid chromatography. The aim of this study was to assess the presence of C3+4 and GTX6 and their contribution to shellfish toxicity. C3+4 and GTX6 were indirectly quantified via pre-column oxidation liquid chromatography with fluorescence detection after hydrolysis conversion into their carbamate analogs. Analyses were carried out in mussel samples collected over a bloom of G. catenatum (>63×103cellsl−1) in Aveiro lagoon, NW Portuguese coast. Concentration levels of sulfocarbamoyl toxin analogs were two orders of magnitude higher than decarbamoyl toxins, which were in turn one order of magnitude higher than carbamoyl toxins. Among the sulfocarbamoyl toxins, C1+2 were clearly the dominant compounds, followed by C3+4 and GTX6. The least abundant sulfocarbamoyl toxin was GTX5. The most important compounds in terms of contribution for sample toxicity were C1+2, which justified 26% of the PSP toxicity. The lesser abundant dcSTX constitutes the second most important compound with similar % of toxicity to C1+2, C3+4 and GTX6 were responsible for approximately 11% and 13%, respectively. The median of the sum of C3+4 and GTX6 was 27%. These levels reached a maximum of 60% as was determined for the sample collected closest to the G. catenatum bloom. This study highlights the importance of these low potency PSP toxin analogs to shellfish toxicity. Hydrolysis conversion of C3+4 and GTX6 is recommended for determination of PSP toxicity when LC detection methods are used for PSP testing in samples exposed to G. catenatum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.