Abstract

The compacted dry density of gravelly soils containing particles that are too large for ordinary laboratory compaction tests is usually estimated by measuring the dry density of the base sample obtained by removing over-sized particles then correcting the measured value by the Walker-Holtz Equation (W&H Eq.). It is known that the W&H Eq. overestimates the dry density of gravelly soils and this trend becomes stronger as the mass ratio P of oversized particles increases. It seems that a satisfactory solution is not yet available. A comprehensive series of laboratory compaction tests was performed on a wide variety of gravelly soil samples with different particle sizes, grading uniformities and particle shapes. The followings were found. The ratio, X, of the maximum dry density predicted by the W&H Eq. to the measured value increases linearly from unity as P increases from zero up to approximately 0.75. The slope of the X-P relation, (X − 1.0) / P, increases as the coefficient of uniformity or the fines content of the base sample increases and as the gravel particles become more angular in a synergistic manner. It is proposed to estimate the maximum dry density of compacted gravelly soil containing oversized particles by dividing the value predicted from the W&H Eq. by X obtained from the substitution of P into the relevant X-P relation. Proposed based on the above is an effective and efficient compaction method for gravelly soils containing oversized particles that controls the degree of saturation and the compaction energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.