Abstract

Hyperspectral imagery was applied to estimating non-galloyl (EC, EGC) and galloyl (ECG, EGCG) types of catechins in new shoots of green tea. Partial least squares regression models were developed to consider the effects of commercial fertilizer (CF) and organic fertilizer (OF). The models could explain each type of catechin with a precision of more than 0.79, with a few exceptions. When the CF model was applied to the OF hyperspectral reflectance and the OF model was applied to the CF hyperspectral reflectance for mutual prediction, the prediction accuracy was better with the OF models than CF models. The prediction models using both CF and OF data (hyperspectral reflectances, and concentrations of catechins) had a precision of more than 0.76 except for the non-galloyl-type catechins as a group and EGC alone. These results provide useful data for maintaining and improving the quality of green tea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.