Abstract

BackgroundCapturing the response of forest ecosystems to inter-annual climate variability is a great challenge. In this study, we tested the capability of an individual-based forest gap model to display carbon fluxes at yearly and daily time scales. The forest model was applied to a spruce forest to simulate the gross primary production (GPP), respiration and net ecosystem exchange (NEE). We analyzed how the variability in climate affected simulated carbon fluxes at the scale of the forest model.ResultsSix years were simulated at a daily time scale and compared to the observed eddy covariance (EC) data. In general, the seasonal cycle of the individual carbon fluxes was correctly described by the forest model. However, the estimated GPP differed from the observed data on the days of extreme climatic conditions. Two new parameterizations were developed: one resulting from a numerical calibration, and the other resulting from a filtering method. We suggest new parameter values and even a new function for the temperature limitation of photosynthesis.ConclusionsThe forest model reproduced the observed carbon fluxes of a forest ecosystem quite well. Of the three parameterizations, the calibrated model version performed best. However, the filtering approach showed that calibrated parameter values do not necessarily correctly display the individual functional relations. The concept of simulating forest dynamics at the individual base is a valuable tool for simulating the NEE, GPP and respiration of forest ecosystems.

Highlights

  • Capturing the response of forest ecosystems to inter-annual climate variability is a great challenge

  • We explored how we can use eddy covariance data to improve the simulation of carbon fluxes with an individualbased forest model

  • The study sites This study focused on a forest site located at Wetzstein Mountain, part of the Thuringian Forest in central-east Germany where measured carbon fluxes and inventory data are available (Wetzstein flux tower, Rebmann et al 2010)

Read more

Summary

Introduction

Capturing the response of forest ecosystems to inter-annual climate variability is a great challenge. The forest model was applied to a spruce forest to simulate the gross primary production (GPP), respiration and net ecosystem exchange (NEE). We analyzed how the variability in climate affected simulated carbon fluxes at the scale of the forest model. The heat wave of 2003, for example, caused a reduction of approximately 30% to the gross primary production (GPP) over Europe (Ciais et al 2005). This extreme event was followed by several studies to understand ecosystem responses and their underlying mechanisms (e.g., Zaitchik et al 2006; Granier et al 2007). We test the potential of a forest gap model that considers forest structure at the local scale to estimate

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.