Abstract
A chaotic system is bounded, and its trajectory is confined to a certain region which is called the chaotic attractor. No matter how unstable the interior of the system is, the trajectory never exceeds the chaotic attractor. In the present paper, the sphere bound of the generalized Lorenz system is given, based on the Lyapunov function and the Lagrange multiplier method. Furthermore, we show the actual parameters and perform numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.